sylph: metagenome profiling by statistical k-mer sketching

Jim Shaw

University of Toronto

Metagenomic workflow (shotgun, not 16S)

What is in my sample?

This work: metagenomic profiling

Standard idea – map reads to genomes + calculate relative abundance

against database Reads K. pneumoniae Unclassified

Classify each read

Why build new metagenome profilers?

Problem: classifying reads is hard!

- Indexing 100,000
 genomes + mapping is
 expensive
- False positives are inevitable (ambiguous reads)

sylph: metagenome profiling by k-mer containment

Sylph (Shaw and Yu, 2023, bioRxiv)

Classify genomes against reads instead

How sylph works (1): k-mer sketching

Step 1: k-mer sketching

Subsample k-mers using **FracMinHash** (similar to **minimizers**)

Sample 1/200 kmers by default

Reference genomes

Step 2: k-mer containment

k-mer containment

Connection to average nucleotide identity (ANI)

Average nucleotide identity: 99% similar strains

Estimate ANI by counting k-mers:

$$ANI \approx \left(\frac{|A \cap B|}{|A|}\right)^{1/k}$$

$$(k \approx 20-32)$$

Containment ANI – metagenomes

$$ANI \approx \left(\frac{|A \cap B|}{|A|}\right)^{1/k}$$

Extends to metagenomes

99% similar strain + two unrelated species

Why ANI? Species defining!

Two (microbial) genomes > 95% ANI ⇒ same species*

Sylph: calculate metagenome containment ANI

• > 95% ⇒ present (at species level)

The low-coverage problem: sylph's innovation

Reads do not cover all k-mers (low-coverage)

$$ANI \neq \left(\frac{|A \cap B|}{|A|}\right)^{1/k}$$

ANI inference fails because *B* is under sequenced

99% similar strain + two unrelated species

B

K-mer coverage "dropouts" due to mutation AND sequencing

Reference Genome

(2) k-mer ANI with coverage adjustment

Sylph:

statistical adjustment for low-coverage sequencing

Intuition

- 1. Some 0s are zero inflation (mutation)
- But some 0s are Poisson (sequencing)
- 3. ANI: which 0s are due to mutation?
- 4. Sylph: **infer Poisson** + **re-adjust** containment for ANI

Sylph results

Sylph corrects ANI for simulated reads at low coverage

Sylph is effective for species-level profiling

ORONTO

Sylph is extremely fast and efficient (multi-sample profiling)

Massive contamination detection

- Contamination/bad metadata in public data
- Solution: metagenome profile to detect contamination

AllTheBacteria - all bacterial genomes assembled, available and searchable

- Contamination check: every single SRA dataset (bacterial isolate Illumina WGS)
- Analyzed ≈ 2 million datasets with sylph

"... sylph was more **accurate**, **faster** (~1 minute per sample) and required **less RAM** (10Gb of RAM for [85,000 genomes]) than previous tools"

Recap: sylph metagenome profiling

- 1. Classify **genomes** against **reads**
- 2. k-mer sampling + coverage-aware ANI statistics

Drawbacks

- Sylph can not classify reads
- Some tasks: **require** classifying reads (e.g. very low coverage)
- Requires species-level representatives (but can use large databases + MAGs)

Conclusion

- Jim Shaw 5th year PhD student (University of Toronto)
- Yun William Yu PhD advisor (Assistant Prof. at Carnegie Mellon University)

Metagenome profiling and containment estimation through abundance-corrected k-mer sketching with sylph

by Jim Shaw and Yun William Yu available on **bioRxiv**

Conseil de recherches en sciences

naturelles et en génie du Canada

Math

•
$$\hat{\lambda} = \frac{\#kmers\ with\ cov = 2}{\#kmers\ with\ cov = 1} \cdot 2$$

• Comes from Poisson PMF:

$$\frac{\Pr(Pois=2)}{\Pr(Pois=1)} = \frac{e^{-\lambda}\lambda^2}{2!} / \frac{e^{-\lambda}\lambda^1}{1!} = \frac{\lambda}{2}$$

Sylph is precise for divergent and lowabundance species

Sylph is precise for low ANI and coverage

