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Metagenomic workflow (shotgun, not 16S)

Profiling
Microbiome Read Use database -> infer taxa
sample €ads abundance/presence

_— < Assembly
De novo assembly of
sequences

What is in my sample?

UNIVERSITY OF

TORONTO




This work: metagenomic profiling

Profiling
Microbiome Read Use database -> infer taxa
sample €ads abundance/presence
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Standard idea — map reads to genomes +
calculate relative abundance

Classify each read
against database

Reads N\
— é E. coli
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— — — S S. enterica
A
— K. pneumoniae
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Why build new metagenome profilers?
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Problem: classifying reads is hard!

* Indexing 100,000
genomes + mapping is
expensive

* False positives are
inevitable (ambiguous
reads)
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sylph: metagenome profiling by k-mer
containment
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Sylph (Shaw and Yu, 2023, bioRxiv)

* Classify genomes against reads instead

Reads

/ E coli Check if genome is

in reads

) . (one at a time)
S. enterica

\ A

é K. pneumoniae
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How sylph works (1): k-mer sketching

ACACACACATCTC ACACACACATCTC
ACACA ACACA
CACAC
ACACA ACACA
CACAC Sketching
ACACA > ACACA
CACAT CACAT
ACATC
CATCT
ATCTC ATCTC
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Step 1: k-mer sketching

Subsample k-mers

using FracMinHash
(similar to minimizers)

Sample 1/200 k-
mers by default
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Step 2: k-mer containment

k-mer
containment

Metagenomic reads

Database genome (150 bases each,
(3 Mb) million of reads)
m - - sketched
sketched — | A| o one
k-mers — >
A - B
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Connection to average nucleotide identity
(ANTI)

Average nucleotide identity: 99% similar strains

Estimate ANI by

counting k-mers:
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Containment ANl — metagenomes

99% similar strain +
two unrelated species
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Extends to metagenomes —— —
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Why ANI? Species defining!

Two (microbial) genomes > 95% ANI = same species*

Sylph: calculate metagenome containment ANI
* >95% = present (at species level)

Reads (k-mers)

> 95% ANI?

A
E. coli (k-mers)
T—— >95% ANI? I
——— T S. enterica (k-mers)

*Jain et al., 2018, Nature Communications
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The low-coverage problem: sylph’s innovation
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Reads do not cover all k-mers (low-coverage)

99% similar strain +
two unrelated species

ANI # (lAlleI)l/k =© @ _l 0

ANI inference fails

because B is under — C —
kK-mers ——— E—
sequenced — 3 —
A [ — —
— E— k-mers under
read sampling
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K-mer coverage “dropouts” due to mutation AND

sequencing
Reference
Genome

TT____T______ - = = =

k-mers in reference
Coverage =2, Coverage=0  Coverage=0 Sequenced cenome
(mutation) (sequencing) (meta)genome
v \4
b 4 P 4 4 4 P 4 4
o o k-mers from
reads
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(2) k-mer ANI with coverage adjustment

/ ifated dus 1o mutations \ Intuition
Syl p h . _ / Poisson with effeciive 1. Some Os are zero
§ °°Veraj'°§rame 4 inflation (mutation)
statistical & /\_ 2. But some Os are
. k-mer coverage Poisson (sequencin
adJ UStment in sample B for genome A f q g)
for | l 3. ANI: which 0s are due
Oor IOW- to mutation?
Cove rage Infer effective coverage \ 4 Sylph infer Poisson +
sequencing l re-adjust containment
for ANI
Naive | | 1/k
containment ANI: (}1{)
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Sylph corrects ANI for simulated reads at low
coverage
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Sylph is effective for species-level profiling

CAMI2 Challenge Marine (species level)
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Sylph is extremely fast and efficient

(multi-sample profiling)
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Massive contamination detection

* Contamination/bad metadata in public data
* Solution: metagenome profile to detect contamination

Public sample Metadata

METADATA

E. Coli??
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AllTheBacteria - all bacterial genomes assembled, available and
searchable

Martin Hunt, 2 Leandro Lima, “= Wei Shen, "= John Lees, "= Zamin Igbal

doi: https://doi.org/10.1101/2024.03.08.584059

e Contamination check: every single SRA dataset (bacterial isolate
Illumina WGS)

* Analyzed = 2 million datasets with sylph

“... syloh was more accurate, faster (~1 minute per sample) and
required less RAM (10Gb of RAM for [85,000 genomes]) than previous
& tools”
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Recap: sylph metagenome profiling

1. Classify genomes Check if each genome
against reads is in all reads

2. k-mer sampling +

A
coverage-aware _ / E. coli
ANI statistics —_——— ;

" — — — S. enterica

\ k
K. pneumoniae
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Drawbacks

* Sylph can not classify reads
* Some tasks: require classifying reads (e.g. very low coverage)

* Requires species-level representatives (but can use large databases +
MAGS)
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Conclusion

 Jim Shaw — 5t year PhD student
(University of Toronto)

* Yun William Yu — PhD advisor
(Assistant Prof. at Carnegie
Mellon University)
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Metagenome profiling and
containment estimation through
abundance-corrected k-mer
sketching with sylph
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available on bioRxiv
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Math

e j= #kmers with cov =2
#kmers with cov =1
e Comes from Poisson PMF:
Pr(Pois=2) e )2
Pr(Pois=1) 2
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Sylph is precise for divergent and low-
abundance species
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Precision
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Sylph is precise for low ANI and coverage
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