Floria: metagenome strain haplotyping with short/long reads

Jim Shaw^{1*}, Jean-Sébastien Gounot^{2*}, Hanrong Chen², Niranjan Nagarajan^{2#}, Yun William Yu^{1,3#}

* Equal contribution

¹University of Toronto ²Genome Institute of Singapore ³Carnegie Mellon University

Strain-level heterogeneity in metagenomes is important!

Answer: depends on technology + algorithms

	Technology	Resulting assembly	
	Short reads (algorithm: SPAdes)	One strain (lost information)	
	Low-fidelity long-reads (algorithm: metaFlye)	One strain (lost information)	
	High-fidelity long-reads (algorithm: hifiasm or metaMDBG)	Both strains	

Introduction: Haplotyping and phasing

Computational goal: reads → **strain-level** "haplosets"

Main idea: computational phasing (haplotyping) using SNPs + read-linkage

alleles Index reads with "heterozygous" SNPs **Output:** cluster reads by SNPs Call SNPs Input: metagenomic reads + Whole genome with mapped reads "reference genomes" or assembly **Alignment**

Contributions (Shaw and Gounot et al. 2024)

- (1) Floria: read clustering (phasing) algorithm from alignments + SNPs
 - Written in Rust; documentation + conda install
- (2) Floria-PL: end-to-end pipeline (fastq -> assemblies)
 - Written in Snakemake integrating floria

Floria-PL: pipeline integrating floria

Floria: read clustering by optimization + network flows

Step 1: local clustering

- 1. Clustering objective: minimum error correction (MEC) score
 - NP-Hard (Lancia et al., 2001)
 - Floria: beam search heuristic
 - often used in Natural Language Processing (NLP)
- 2. # of strains? → iteratively cluster until MEC score plateaus

Step 1: local clustering

Step 2: network flows

(DAG = Directed acyclic graph)

(3) Form a DAG with read sets as nodes and edges weighted by shared reads

By linear programming:

$$rg\min_{f \in Flow} \sum_{e \in E} |w(e) - f(e)|$$

f – network flow w – original weights

Step 2: network flows

Step 3: Obtaining haploset paths

Largest *minimum* flow path (via dynamic programming - DP)

Largest *minimum* flow path (via dynamic programming - DP)

(6) Obtain haplosets (strain-specific read sets) by aggregating reads over paths

Step 3: trim flow graph to obtain haplosets

Benchmarking results

Benchmarking: simulated metagenome

Synthetic metagenomes:

- 40 common gut species
- 1-5 strain genomes per species
- Synthetic noisy nanopore reads (88% identity)
 - Random strain coverages between [5,25]

Comparison against:

- 1. metaFlye metagenome assembler (Kolmogorov et al. 2020)
 - 2. Strainberry strain assembler (Vicedomini et al. 2021)

Assembly benchmarking

Results: **real** metagenomes Long read **AND** short read

Floria on 109 gut nanopore samples!

(dataset: Gounot et al. 2022, Nat. Comms.)

< 15 mins per sample for phasing!

Floria allows for **visualization** — 3-strain *E. coli*

Longitudinal strain tracking with floria

- 24 longitudinal SHORT-READ gut samples (636 days)
 - Dataset from "Metabolic independence drives gut microbial colonization and resilience in health and disease" by Watson et al. (Genome Biology 2023)
- Run floria → obtain haplosets → track across time

Line: haploset match across sample

Two species with interesting patterns:

F. intestinalis - **stable**

A. hadrus – transient

Low-abundance strain to high-abundance strain emergence? **Visualize!**

Zoomed in on red haploset ("6609"):

LOW coverage

Floria works on ancient viral metagenomes!?

From Maxime Borry (Postdoc at Max Planck for Evo Anthro):

Ancient mixed infection of hepatitis B (Kocher et al., 2021, Science)

Input: strain-mixed (metagenomic) reads

Output: "haplosets"

Conclusion

- Developed floria: a strain-level read clustering (phasing) algorithm
 - Short OR long reads
 - < 20 min per metagenome
 - assembly optional
- Fast, informative, and versatile
 - can do strain-level metagenomic assembly...
 - but even more useful for hypothesis generation and data sleuthing

Acknowledgements + authors

- Jim Shaw (presenter)
 - PhD at University of Toronto (2024)
 - incoming postdoc at Harvard Medical School / DFCI
- Jean-Sébastien Gounot
 - Research fellow at Genome Institute of Singapore
 - co-lead author
- Hanrong Chen
 - Postdoc at Genome Institute of Singapore
- Niranjan Nagarajan
 - Genome Institute of Singapore, co-lead PI
- Yun William Yu
 - Carnegie Mellon University, co-lead PI

Floria: fast and accurate strain haplotyping in metagenomes 3

Jim Shaw, Jean-Sebastien Gounot, Hanrong Chen, Niranjan Nagarajan ☒, Yun William Yu ☒ Author Notes

Bioinformatics, Volume 40, Issue Supplement_1, July 2024, Pages i30–i38, https://doi.org/10.1093/bioinformatics/btae252

Published: 28 June 2024

Natural Sciences and Engineering Research Council of Canada Conseil de recherches en sciences naturelles et en génie du Canada

Thanks to Maxime Borry for ancient DNA results

