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Introduction

Consider two strings of length n and m, n ≥ m.

▸ Sequence alignment – optimally solved in worst-case O(mn) time

▸ Dynamic programming (Smith and Waterman, 1981; Needleman and
Wunsch, 1970)
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Problems

Consider read alignment – n ≈ 3,000,000,000, m ≈ 150 − 1,000,000

▸ Optimal methods are slow, so heuristics are used – BWA (Li and Durbin,
2009), minimap2 (Li, 2018), bowtie2 (Langmead and Salzberg, 2012), etc

▸ But heuristics lack theoretical guarantees
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Question

Can we put non-trivial theoretical guarantees on heuristic alignment
methods?
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Seed-chain-extend

▸ We analyze the seed-chain-extend alignment heuristic



Seed-chain-extend
analysis

Jim Shaw and Yun
William Yu

Introduction

Seed-chain-extend
model

Random model

Extension runtime
and recoverability

Chaining runtime

Real results

Sketching k-mers

Conclusion

References

Seed-chain-extend steps

Align two strings S , S ′ of length n and m ≤ n.

1. Seeding and matching k-mers
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Seeding and matching k-mers
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Seed-chain-extend steps

1. Seeding and matching k-mers

2. Obtain chain (sequence) of k-mer matches (anchors)
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Obtain chain (sequence) of k-mer matches (anchors)

S

S'

S

S'

1

2

3



Seed-chain-extend
analysis

Jim Shaw and Yun
William Yu

Introduction

Seed-chain-extend
model

Random model

Extension runtime
and recoverability

Chaining runtime

Real results

Sketching k-mers

Conclusion

References

Seed-chain-extend steps

1. Seeding and matching k-mers

2. Obtain chain (sequence) of k-mer matches (anchors)

3. Dynamic programming extension through gaps
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Dynamic programming extension through gaps
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Seed-chain-extend use-cases

▸ Used in read-to-genome (e.g. minimap2) or genome-to-genome alignments
(e.g. MUMmer (Marçais et al., 2018))

▸ Worst-case still O(mn) – how do we explain the better than O(mn)
behavior? (Medvedev, 2022)

▸ Average-case analysis
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Random sequence model

1. “reference genome” S - uniformly random string of nucleotides, length n

2. “read” S ′ - substring of S , length m ≤ n, i.i.d substitutions with probability
θ

3. k-mer length k = C log n for some C(θ) ≈ 2.
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Runtime

▸ Runtime = TSeed +TChain +TExtension

▸ TSeed ,TChain,TExtension are random variables

▸ Want E[TSeed +TChain +TExtension]

▸ Focus on TChain,TExtension.
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Extension runtime and recoverability

Two questions:

▸ What is E[TExtension]?

▸ How good is the resulting alignment?
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Random sequence and alignment
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True homology of S, S'
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DP search space

S' - length m

S - length n

Search space
O(nm)Semi-global dynamic programming 
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Banded DP search space

Search space
O(mB)Naive banded dynamic programming

Search space may
may not cover diagonal 

B

S - length n

S' - length m
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Seed-chain-extend search space
Search space
depends on
S,S'

Seed-chain-extend

ACACACACATCTCAAACCCCAATCATCACAC

T
C
T
C
G
G
G
C
C
C
C
G
G
T
C
A
T



Seed-chain-extend
analysis

Jim Shaw and Yun
William Yu

Introduction

Seed-chain-extend
model

Random model

Extension runtime
and recoverability

Chaining runtime

Real results

Sketching k-mers

Conclusion

References

Seed-chain-extend search space
Search space
depends on
S,S'

Seed-chain-extend

AAAAGGGGGGGGGGGGGGGGGGGGGGGGTTTT

A
A
A
A
C
C
C
C
C
C
C
C
T
T
T
T



Seed-chain-extend
analysis

Jim Shaw and Yun
William Yu

Introduction

Seed-chain-extend
model

Random model

Extension runtime
and recoverability

Chaining runtime

Real results

Sketching k-mers

Conclusion

References

Extension runtime and recoverability

1. E[TExtension] – expected size search space

2. Recoverability – fraction of diagonal covered by search space and
k-mers

Theorem (Theorem 1 simplified from Shaw and Yu (2023))

E[TExtension] is O(mnf (θ) log n), where f (θ) < 2.43 ⋅ θ. The expected
recoverability is ≥ 1 −O( 1√

m
).
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Proof idea

1. Sums of almost independent k-mer random variables Ô⇒ no degenerate
chainings with high probabililty (Janson, 2004; Ganesh and Sy, 2020)

2. E[TExtension] ≈ E[gap size2] ≤ O(m(1 − θ)−k log n) = O(mnf (θ) log n)
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Runtime of TChain

▸ Let N be the number of k-mer matches or anchors (N is a random variable)

▸ Linear gap cost objective – optimally solved in TChain = O(N logN) time
(Abouelhoda and Ohlebusch, 2005; Jain et al., 2021)

Theorem (Theorem 6 simplified from Shaw and Yu (2023))

Under our random model with S length n, S ′ length m, k = C log n,

E[TChain] = O(m logm)
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Real nanopore runtimes

▸ Are our asymptotic results accurate?

▸ Took nanopore reads of ∼ 95% accuracy from various species, so θ = 0.05

▸ Aligned with custom seed-chain-extend aligner, k = C log n ≈ 2 log n
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Chaining + Extension runtimes



Seed-chain-extend
analysis

Jim Shaw and Yun
William Yu

Introduction

Seed-chain-extend
model

Random model

Extension runtime
and recoverability

Chaining runtime

Real results

Sketching k-mers

Conclusion

References

Extension runtime

▸ E[TExtension] = O(m nf (θ) log n ), f (0.05) ≈ 0.08

▸ Slope of extension runtime ∝ n0.08 log n (approximately)
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Extension runtime

▸ E[TExtension] = O(m nf (θ) log n ), f (0.05) ≈ 0.08
▸ Slope of extension runtime ∝ n0.08 log n (approximately)
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Extension runtime predictions are informative
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Figure: The x0.08 log x fitted line is better than just log x as predicted by theory – even
with indels!
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Sketching result

▸ Real long-read aligners don’t use all k-mers – subsample via sketching

▸ Minimizers (Roberts et al., 2004), syncmers (Edgar, 2021), etc
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Sketching
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Figure: Sketching – subsampling k-mers
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Sketching result

Let c = Θ(log n) < k .

Theorem (Theorem 2 from Shaw and Yu (2023) simplified)

We can subsample to 1
c of the k-mers using the open syncmer method, and

▸ the same extension runtime/recoverability results hold

▸ but chaining only takes 1
c as long

Sketching provably reduces chaining time without increasing extension time
too much!
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Simulation – sketching vs no sketching

Figure: Align two length n strings with θ = 0.10. Sketching with fraction c ≈ 2 log n
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Conclusion

Motivation

▸ Optimal sequence alignment is slow – so we use heuristics

▸ Heuristics have bad worst-case guarantees; not representative of real times

What we did

▸ Proved O(mnf (θ) log n)≪ O(mn) runtime and good accuracy in
expectation for seed-chain-extend.

▸ Bounds also work for sketching and real data; provides justification usage of
sketching in long-read aligners
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Figure: Jim Shaw, Yun William Yu
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