Seed-chain-extend alignment is accurate and runs in close to $O(m \log n)$ time for similar sequences: a rigorous average-case analysis

Jim Shaw and Yun William Yu

University of Toronto, Canada

RECOMB 2023

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random mod

and recoverability

Chaining runtime

eal results

ketching k-mer

Conclusion

Introduction

Consider two strings of length n and m, $n \ge m$.

▶ Sequence alignment – optimally solved in worst-case O(mn) time

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability

Chaining runtim

eal results

ketching k-mer

onclusion

Introduction

Consider two strings of length n and m, $n \ge m$.

- ▶ Sequence alignment optimally solved in worst-case O(mn) time
- Dynamic programming (Smith and Waterman, 1981; Needleman and Wunsch, 1970)

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random mode

Extension runtime and recoverability

Chaining runtim

eal results

cccining it in

onclusion

Problems

Consider read alignment $-n \approx 3,000,000,000, m \approx 150 - 1,000,000$

▶ Optimal methods are slow, so heuristics are used – BWA (Li and Durbin, 2009), minimap2 (Li, 2018), bowtie2 (Langmead and Salzberg, 2012), etc

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random mode

Extension runtime and recoverability

Chaining runtime

eal results

Northeleline In an area

onclusion

Problems

Consider read alignment $-n \approx 3,000,000,000, m \approx 150 - 1,000,000$

- ▶ Optimal methods are slow, so heuristics are used BWA (Li and Durbin, 2009), minimap2 (Li, 2018), bowtie2 (Langmead and Salzberg, 2012), etc
- But heuristics lack theoretical guarantees

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random mode

Extension runtime and recoverability

Chaining runtime

eal results

Transaction of the second

.....

onclusion

Question

Can we put non-trivial theoretical guarantees on heuristic alignment methods?

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

extension runtime and recoverability

Chaining runtim

Real results

cecening it in

onclusion

Seed-chain-extend

▶ We analyze the *seed-chain-extend* alignment heuristic

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability

Chaining runtime

eal results

ear results

ketching k-mei

onclusion

Seed-chain-extend steps

Align two strings S, S' of length n and $m \le n$.

1. Seeding and matching k-mers

Seed-chain-extend analysis

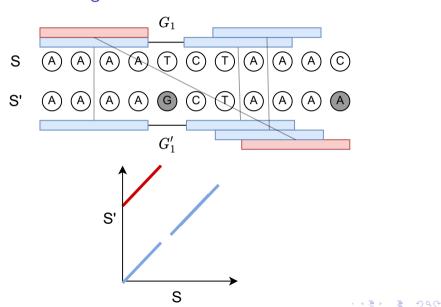
Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random mode

Extension runtime and recoverability


Chaining runtim

eal results

ccciiiig k iii

Conclusion

Seeding and matching k-mers

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introductio

Seed-chain-extend model

tandom model

Extension runtime and recoverability

Chaining runtime

Real results

Standard Committee on the

Conclusion

Seed-chain-extend steps

- 1. Seeding and matching k-mers
- 2. Obtain chain (sequence) of k-mer matches (anchors)

Seed-chain-extend analysis

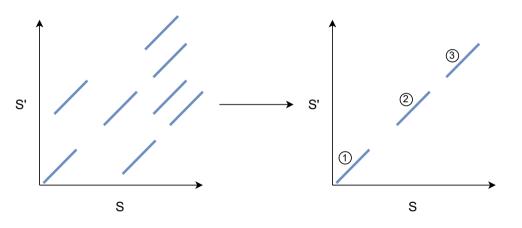
Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random mode

Extension runtime and recoverability


Chaining runtim

eal results

ketching k-me

onclusion

Obtain chain (sequence) of k-mer matches (anchors)

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend

Random model

extension runtime and recoverability

Chaining runtime

eal results

Sketching k-mers

onclusion

Seed-chain-extend steps

- 1. Seeding and matching k-mers
- 2. Obtain chain (sequence) of k-mer matches (anchors)
- 3. Dynamic programming extension through gaps

Seed-chain-extend analysis

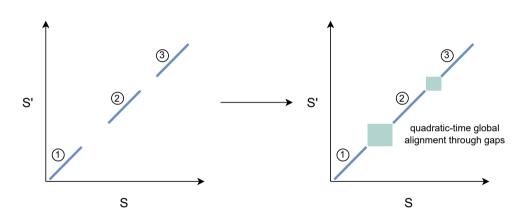
Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random mode

Extension runtime and recoverability


Chaining runting

eal results

.....

Conclusion

Dynamic programming extension through gaps

Seed-chain-extend analysis

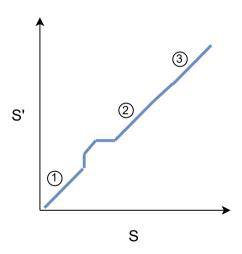
Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random mode

Extension runtime and recoverability


Chaining runtime

eal results

Sketching k-mers

onclusion

Dynamic programming extension through gaps

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability

Chaining runtime

eal results

Store and Store at Lorent

onclusion

Seed-chain-extend use-cases

 Used in read-to-genome (e.g. minimap2) or genome-to-genome alignments (e.g. MUMmer (Marçais et al., 2018)) Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability

Chaining runtim

eal results

.....

Seed-chain-extend use-cases

- ▶ Used in read-to-genome (e.g. minimap2) or genome-to-genome alignments (e.g. MUMmer (Marçais et al., 2018))
- Worst-case still O(mn) how do we explain the better than O(mn) behavior? (Medvedev, 2022)

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability

Chaining runtime

Real results

.....

Seed-chain-extend use-cases

- ▶ Used in read-to-genome (e.g. minimap2) or genome-to-genome alignments (e.g. MUMmer (Marçais et al., 2018))
- ▶ Worst-case still O(mn) how do we explain the better than O(mn) behavior? (Medvedev, 2022)
- Average-case analysis

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability

Chaining runtime

eal results

.....

onclusion

Random sequence model

1. "reference genome" S - uniformly random string of nucleotides, length n

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability

Chaining runtim

eal results

onclusion

Random sequence model

- 1. "reference genome" S uniformly random string of nucleotides, length n
- 2. "read" S' substring of S, length $m \le n$, i.i.d substitutions with probability θ

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability

Chaining runtime

eal results

.

ketching k-mers

onclusion

Random sequence model

- 1. "reference genome" S uniformly random string of nucleotides, length n
- 2. "read" S' substring of S, length $m \le n$, i.i.d substitutions with probability θ
- 3. k-mer length $k = C \log n$ for some $C(\theta) \approx 2$.

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability

Chaining runtime

eal results

Sketching k-men

onclusion

Runtime

- ▶ Runtime = $T_{Seed} + T_{Chain} + T_{Extension}$
- $ightharpoonup T_{Seed}, T_{Chain}, T_{Extension}$ are random variables

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability

Chaining runtime

eal results

Conclusion

Runtime

- ▶ Runtime = $T_{Seed} + T_{Chain} + T_{Extension}$
- $ightharpoonup T_{Seed}$, T_{Chain} , $T_{Extension}$ are random variables
- Want $\mathbb{E}[T_{Seed} + T_{Chain} + T_{Extension}]$
- Focus on T_{Chain} , $T_{Extension}$.

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability

Chaining runtim

eal results

landarda la compani

onclusion

Two questions:

- What is $\mathbb{E}[T_{Extension}]$?
- ▶ How good is the resulting alignment?

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

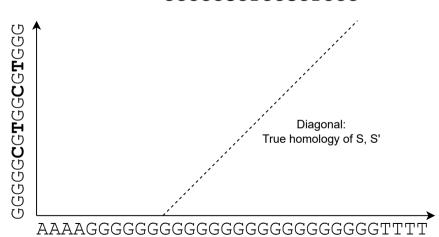
Introduction

Seed-chain-extend model

Random mode

Extension runtime and recoverability

Chaining runtime


Real results

Strakabila a trasa

nclusion

Random sequence and alignment

AAAAGGGGGGGGGGGGGGGGGTTTT GGGGG**C**G**T**GG**C**G**T**GG

Seed-chain-extend analysis

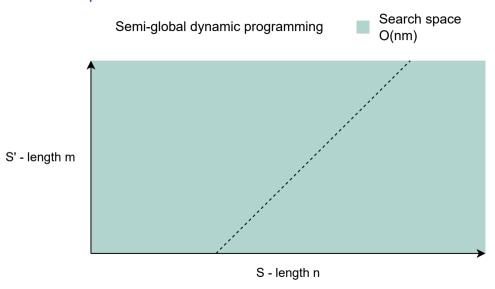
Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend

Random mod

Extension runtime and recoverability


Chaining runtime

teal results

ketching k-mers

Conclusion

DP search space

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

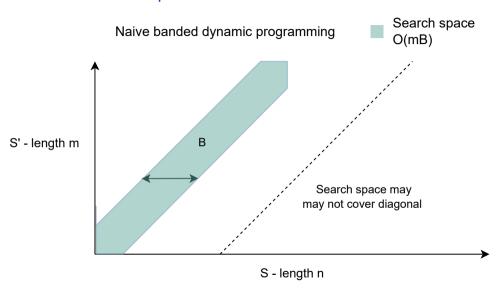
Introduction

Seed-chain-extend model

landom mode

Extension runtime and recoverability

Chaining runtime


eal results

.

Onciusion

Banded DP search space

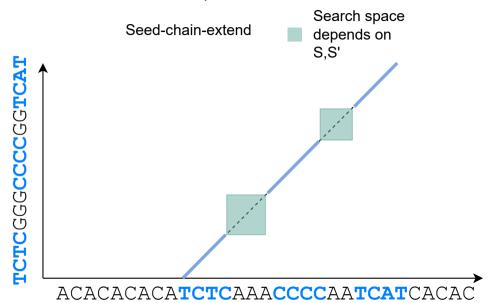
Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend

Random mod


Extension runtime and recoverability

Chaining runtime

eal results

Seed-chain-extend search space

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

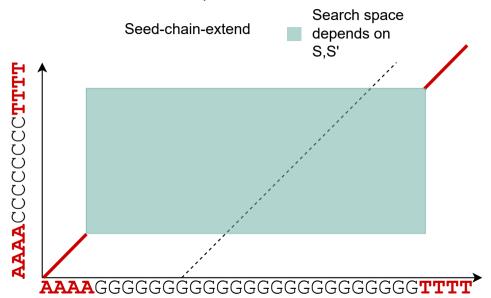
Introduction

Seed-chain-extend

andom mod

Extension runtime and recoverability

naining runtime


eal results

ketching k-mer

Conclusion

erences

Seed-chain-extend search space

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

ntroduction

Seed-chain-extend

Random mod

Extension runtime and recoverability

Chaining runtime

. .

Sketching k-mers

onclusion

eterences

1. $\mathbb{E}[T_{Extension}]$ – expected size search space

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random mode

Extension runtime and recoverability

Chaining runtime

Real results

(car results

cecening K-III

onclusion

- 1. $\mathbb{E}[T_{Extension}]$ expected size search space
- Recoverability fraction of diagonal covered by search space and k-mers

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend

Random mode

Extension runtime and recoverability

Chaining runtime

eal results

Landard Community on the community

Conclusion

- 1. $\mathbb{E}[T_{Extension}]$ expected size search space
- Recoverability fraction of diagonal covered by search space and k-mers

Theorem (Theorem 1 simplified from Shaw and Yu (2023))

 $\mathbb{E}[T_{Extension}]$ is $O(mn^{f(\theta)}\log n)$, where $f(\theta) < 2.43 \cdot \theta$. The expected recoverability is $\geq 1 - O(\frac{1}{\sqrt{m}})$.

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introductio

Seed-chain-extend model

Random mod

Extension runtime and recoverability

Chaining runtime

eal results

ketching k-mers

Conclusion

Proof idea

1. Sums of *almost independent* k-mer random variables ⇒ no degenerate chainings with high probability (Janson, 2004; Ganesh and Sy, 2020)

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability

Chaining runtime

eal results

.

anclusion

Proof idea

1. Sums of *almost independent* k-mer random variables \implies no degenerate chainings with high probability (Janson, 2004; Ganesh and Sy, 2020)

2. $\mathbb{E}[T_{Extension}] \approx \mathbb{E}[\text{gap size}^2] \leq O(m(1-\theta)^{-k} \log n) = O(mn^{f(\theta)} \log n)$

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random mode

Extension runtime and recoverability

Chaining runtime

leal results

C1 . 11 . 1

Runtime of T_{Chain}

Let N be the number of k-mer matches or anchors (N is a random variable)

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Pandom model

Extension runtime and recoverability

Chaining runtime

al results

ear results

ketching k-mer

onclusion

Runtime of T_{Chain}

- ▶ Let *N* be the number of k-mer matches or anchors (*N* is a random variable)
- ▶ **Linear gap cost** objective optimally solved in $T_{Chain} = O(N \log N)$ time (Abouelhoda and Ohlebusch, 2005; Jain et al., 2021)

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability

Chaining runtime

eal results

ketening k-in

onclusion

Runtime of T_{Chain}

- ▶ Let *N* be the number of k-mer matches or anchors (*N* is a random variable)
- ▶ **Linear gap cost** objective optimally solved in $T_{Chain} = O(N \log N)$ time (Abouelhoda and Ohlebusch, 2005; Jain et al., 2021)

Theorem (Theorem 6 simplified from Shaw and Yu (2023))

Under our random model with S length n, S' length m, $k = C \log n$,

$$\mathbb{E}[T_{Chain}] = O(m \log m)$$

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability

Chaining runtime

Real results

sketching k-mers

Conclusion

Real nanopore runtimes

- Are our asymptotic results accurate?
- ▶ Took nanopore reads of ~ 95% accuracy from various species, so θ = 0.05
- ▶ Aligned with custom seed-chain-extend aligner, $k = C \log n \approx 2 \log n$

Seed-chain-extend analysis

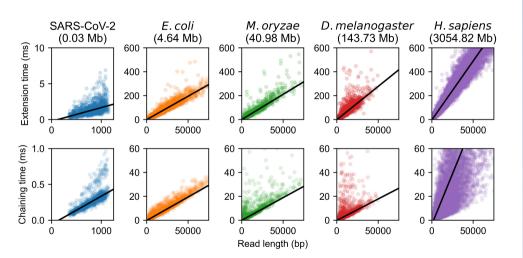
Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability


Chaining runtime

Real results

Skatabina k mare

.....

Chaining + Extension runtimes

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extended model

Random mod

ktension runtimed recoverability

Real results

Sketching k-mers

Conclusion

Extension runtime

$$\mathbb{E}[T_{Extension}] = O(m \, n^{f(\theta)} \log n), \, f(0.05) \approx 0.08$$

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random model

Extension runtime and recoverability

Chaining runtime

Real results

Sketching k-mer

onclusion

Extension runtime

- $\mathbb{E}[T_{Extension}] = O(m \, n^{f(\theta)} \log n \,), \, f(0.05) \approx 0.08$
- ► Slope of extension runtime $\propto n^{0.08} \log n$ (approximately)

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random mode

Extension runtime and recoverability

Chaining runtime

Real results

ketching k-mers

onclusion

Extension runtime predictions are informative

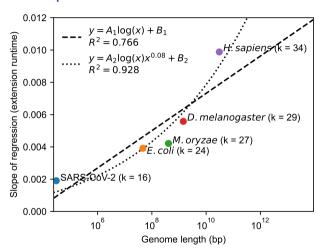


Figure: The $x^{0.08} \log x$ fitted line is better than just $\log x$ as predicted by theory – even with indels!

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend

Random mod

nd recoverability

Chailing runtiin

Real results

Sketching k-mer

Conclusion

Sketching result

- ▶ Real long-read aligners don't use all k-mers subsample via sketching
- Minimizers (Roberts et al., 2004), syncmers (Edgar, 2021), etc

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

landom model

Extension runtime and recoverability

Chaining runtim

eal results

Sketching k-mers

Retelling K-III

Conclusion

Sketching

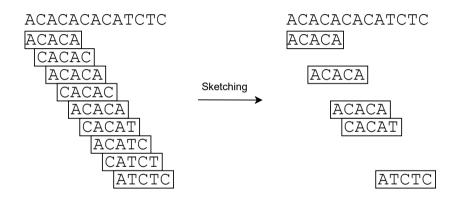


Figure: Sketching – subsampling k-mers

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-exten model

Random mod

Extension runtime and recoverability

Chaining runtime

eal results

Sketching k-mers

Conclusion

Sketching result

Let $c = \Theta(\log n) < k$.

Theorem (Theorem 2 from Shaw and Yu (2023) simplified)

We can subsample to $\frac{1}{c}$ of the k-mers using the open syncmer method, and

- the same extension runtime/recoverability results hold
- but chaining only takes $\frac{1}{c}$ as long

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random mode

Extension runtime and recoverability

Chaining runtim

eal results

Sketching k-mers

analusian

Sketching result

Let $c = \Theta(\log n) < k$.

Theorem (Theorem 2 from Shaw and Yu (2023) simplified)

We can subsample to $\frac{1}{c}$ of the k-mers using the open syncmer method, and

- the same extension runtime/recoverability results hold
- **b** but chaining only takes $\frac{1}{c}$ as long

Sketching provably **reduces** chaining time **without increasing** extension time too much!

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

ntroduction

Seed-chain-extend model

Random mod

Extension runtime and recoverability

Chaining runtin

eal results

Sketching k-mers

Conclusion

Simulation – sketching vs no sketching

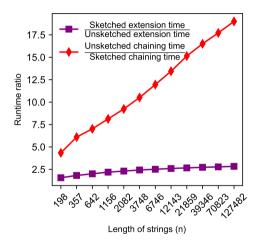


Figure: Align two length *n* strings with $\theta = 0.10$. Sketching with fraction $c \approx 2 \log n$

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introductio

Seed-chain-extend

Random mode

extension runtime and recoverability

Chaining runtime

eal results

Sketching k-mers

Conclusion

Motivation

▶ Optimal sequence alignment is slow – so we use heuristics

What we did

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

Random mode

Extension runtime and recoverability

Chaining runtim

al results

ketching k-mers

Conclusion

Motivation

- ▶ Optimal sequence alignment is slow so we use heuristics
- ▶ Heuristics have bad worst-case guarantees; not representative of real times

What we did

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introduction

Seed-chain-extend model

andom model

Extension runtime and recoverability

Chaining runtin

teal results

ketching k-mers

Conclusion

Motivation

- ▶ Optimal sequence alignment is slow so we use heuristics
- ▶ Heuristics have bad worst-case guarantees; not representative of real times

What we did

▶ Proved $O(mn^{f(\theta)} \log n) \ll O(mn)$ runtime and good accuracy in expectation for seed-chain-extend.

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introductio

Seed-chain-extend model

Random mode

Extension runtime and recoverability

Chaining runtime

eal results

Sketching k-mer

Conclusion

Motivation

- ▶ Optimal sequence alignment is slow so we use heuristics
- ▶ Heuristics have bad worst-case guarantees; not representative of real times

What we did

- ▶ Proved $O(mn^{f(\theta)}\log n) \ll O(mn)$ runtime and good accuracy in expectation for seed-chain-extend.
- Bounds also work for sketching and real data; provides justification usage of sketching in long-read aligners

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

ntroduction

Seed-chain-extend model

Random mode

Extension runtime and recoverability

Chaining runtime

eal results

katabina k masu

Sketching k-mers

Conclusion

Funding and acknowledgements

Proving sequence aligners can guarantee accuracy in almost O(m log n) time through an average-case analysis of the seed-chain-extend heuristic

published in **Genome Research** (advance). Thank you to the anonymous reviewers.

Figure: Jim Shaw, Yun William Yu

Natural Sciences and Engineering Research Council of Canada

Conseil de recherches en sciences naturelles et en génie du Canada

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Conclusion

Abouelhoda MI and Ohlebusch E. 2005. Chaining algorithms for multiple genome comparison. <i>Journal of Discrete Algorithms</i> 3 : 321–341.	Seed-chain-extend analysis
Edgar R. 2021. Syncmers are more sensitive than minimizers for selecting conserved k-mers in biological sequences. <i>PeerJ</i> 9 : e10805.	Jim Shaw and Yun William Yu Introduction
Ganesh A and Sy A. 2020. Near-Linear Time Edit Distance for Indel Channels. arXiv:2007.03040 [cs, q-bio] ArXiv: 2007.03040.	
Jain C, Gibney D, and Thankachan SV. 2021. Co-linear chaining with overlaps and gap costs. preprint, Bioinformatics.	Extension runtime and recoverability
Janson S. 2004. Large deviations for sums of partly dependent random variables: Large Deviations for Dependent Random Variables. Random Structures &	Chaining runtime Real results Sketching k-mers

Langmead B and Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. Nature Methods 9: 357-359. Number: 4 Publisher: Nature Publishing Group.

Burrows-Wheeler transform. Bioinformatics 25: 1754-1760

Li H. 2018. Minimap2: pairwise alignment for nucleotide sequences.

Li H and Durbin R. 2009. Fast and accurate short read alignment with

Algorithms **24**: 234–248.

Bioinformatics **34**: 3094–3100.

Medvedev P. 2022. The limitations of the theoretical analysis of applied algorithms. ArXiv:2205.01785 [cs].

Needleman SB and Wunsch CD. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. *Journal of Molecular Biology* **48**: 443–453.

Roberts M, Hayes W, Hunt BR, Mount SM, and Yorke JA. 2004. Reducing storage requirements for biological sequence comparison. *Bioinformatics* **20**: 3363–3369.

Smith T and Waterman M. 1981. Identification of common molecular subsequences. *Journal of Molecular Biology* **147**: 195–197.

Seed-chain-extend analysis

Jim Shaw and Yun William Yu

Introductio

Seed-chain-externodel

nd recoverability

naining runtim

eal results

Sketching k-mers

onclusion