Seed-chain-extend
analysis

Jim Shaw and Yun
William Yu

Seed-chain-extend alignment is accurate and runs in close
to O(mlogn) time for similar sequences: a rigorous
average-case analysis

Jim Shaw and Yun William Yu

University of Toronto, Canada

RECOMB 2023

% TORONTO

)



Seed-chain-extend

IntrOd UCtlon analysis

Jim Shaw and Yun
William Yu

Introduction

Consider two strings of length n and m, n> m.

» Sequence alignment — optimally solved in worst-case O(mn) time



Seed-chain-extend

IntrOd UCthn analysis

Jim Shaw and Yun
William Yu

Introduction

Consider two strings of length n and m, n> m.
» Sequence alignment — optimally solved in worst-case O(mn) time

» Dynamic programming (Smith and Waterman, 1981; Needleman and
Wunsch, 1970)
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Introduction

Consider read alignment — n ~ 3,000,000,000, m ~ 150 — 1,000, 000

» Optimal methods are slow, so heuristics are used — BWA (Li and Durbin,
2009), minimap2 (Li, 2018), bowtie2 (Langmead and Salzberg, 2012), etc
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Introduction

Consider read alignment — n ~ 3,000,000,000, m ~ 150 — 1,000, 000

» Optimal methods are slow, so heuristics are used — BWA (Li and Durbin,
2009), minimap2 (Li, 2018), bowtie2 (Langmead and Salzberg, 2012), etc

» But heuristics lack theoretical guarantees
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Introduction

Can we put non-trivial theoretical guarantees on heuristic alignment
methods?
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> We analyze the seed-chain-extend alignment heuristic
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Seed-chain-extend steps

Align two strings S, S’ of length n and m < n.

1. Seeding and matching k-mers
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Seed-chain-extend steps

1. Seeding and matching k-mers

2. Obtain chain (sequence) of k-mer matches (anchors)
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Seed-chain-extend steps

1. Seeding and matching k-mers
2. Obtain chain (sequence) of k-mer matches (anchors)

3. Dynamic programming extension through gaps
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Dynamic programming extension through gaps
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Dynamic programming extension through gaps
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Seed-chain-extend use-cases

» Used in read-to-genome (e.g. minimap2) or genome-to-genome alignments
(e.s. MUMmer (Margais et al., 2018))
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» Used in read-to-genome (e.g. minimap2) or genome-to-genome alignments
(e.g. MUMmer (Margais et al., 2018))

» Worst-case still O(mn) — how do we explain the better than O(mn)
behavior? (Medvedev, 2022)
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» Used in read-to-genome (e.g. minimap2) or genome-to-genome alignments
(e.g. MUMmer (Margais et al., 2018))

» Worst-case still O(mn) — how do we explain the better than O(mn)
behavior? (Medvedev, 2022)

> Average-case analysis
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1. “reference genome” S - uniformly random string of nucleotides, length n
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1. “reference genome” S - uniformly random string of nucleotides, length n

2. “read” S’ - substring of S, length m < n, i.i.d substitutions with probability
0
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Random model

1. “reference genome” S - uniformly random string of nucleotides, length n

2. “read” S’ - substring of S, length m < n, i.i.d substitutions with probability
0

3. k-mer length k = Clogn for some C(6) ~ 2.



Seed-chain-extend

RU ntlme analysis

Jim Shaw and Yun
William Yu

Random model

» Runtime = TSeed + TChain + TExtension

> Tseeds T Chains T Extension are random variables
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Random model

» Runtime = TSeed + TChain + TExtension

v

Tseed, Tchains T Extension are random variables

v

Want E[Tseed + Tchain + TExtension]

» Focus on Tchain, TExtension-



Extension runtime and recoverability

Two questions:
» What is E[ Textension]?

» How good is the resulting alignment?

Seed-chain-extend
analysis

Jim Shaw and Yun
William Yu

Extension runtime
and recoverability



Seed-chain-extend

Random sequence and alignment i

Jim Shaw and Yun

AAAAGGGGGGGEGEGEGEEEEEGEEEEGEEEEGEGETTTT William Yo
GGGGGCGTGGCGTGGG

Extension runtime
and recoverability

L0 Diagonal:
True homology of S, S'
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DP search space

Semi-global dynamic programming

Search space
B O(nm)
S'-length m

S -length n
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Banded DP search space

Naive banded dynamic programming

S'-length m
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Search space o
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Seed-chain-extend search space

AAAACCCCCCCCTTTT

Search space
Seed-chain-extend depends on

S,S'
A

AAAAGGGGGGGGGGGGGGGGGGGGGGGGTTTT}
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Extension runtime and recoverability

1. E[ Textension] — €xpected size search space
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Extension runtime and recoverability

1. E[ Textension] — €xpected size search space

2. Recoverability — fraction of diagonal covered by search space and
k-mers
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1. E[ Textension] — €xpected size search space

2. Recoverability — fraction of diagonal covered by search space and Erseamsten mumdime
k mers and recoverability

Theorem (Theorem 1 simplified from Shaw and Yu (2023))

E[ Textension] is O(mnf(e) log n), where f(6) <2.43-6. The expected
recoverability is > 1 - O(ﬁ)



Proof idea

1. Sums of almost independent k-mer random variables = no degenerate
chainings with high probabililty (Janson, 2004; Ganesh and Sy, 2020)
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Proof idea

1. Sums of almost independent k-mer random variables = no degenerate
chainings with high probabililty (Janson, 2004; Ganesh and Sy, 2020)

2. E[ Tetension] ~ E[gap size?] < O(m(1 - 6) ¥ logn) = O(mnf®) log n)
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» Let N be the number of k-mer matches or anchors (N is a random variable)

» Linear gap cost objective — optimally solved in T¢pain = O(Nlog N) time
(Abouelhoda and Ohlebusch, 2005; Jain et al., 2021)

Chaining runtime
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» Let N be the number of k-mer matches or anchors (N is a random variable)

» Linear gap cost objective — optimally solved in T¢pain = O(Nlog N) time
(Abouelhoda and Ohlebusch, 2005; Jain et al., 2021)

Chaining runtime

Theorem (Theorem 6 simplified from Shaw and Yu (2023))
Under our random model with S length n, S’ length m, k = Clogn,

E[ Tchain] = O(mlog m)



Real nanopore runtimes

> Are our asymptotic results accurate?

» Took nanopore reads of ~ 95% accuracy from various species, so 6 =

> Aligned with custom seed-chain-extend aligner, k = Clogn=2logn
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Real results



Chaining + Extension runtimes

Extension time (ms)

Chaining time (ms)

Seed-chain-extend
analysis

Jim Shaw and Yun
William Yu

Real results

SARS-CoV-2 E.coli M. oryzae D.melanogaster  H.sapiens
(0.03 Mb) (4.64 Mb) (40.98 Mb) (143.73 Mb) (3054.82 Mb)
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Real results
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» E[ Textension] = O(m nf P logn ), £(0.05) ~ 0.08

» Slope of extension runtime o< n%%log n (approximately)

Real results



Extension runtime predictions are informative

Figure: The x%% |og x fitted line is better than just log x as predicted by theory — even

with indels!

Slope of regression (extension runtime)
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> Real long-read aligners don't use all k-mers — subsample via sketching
» Minimizers (Roberts et al., 2004), syncmers (Edgar, 2021), etc

Sketching k-mers
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Figure: Sketching — subsampling k-mers
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Let ¢ = ©(logn) < k.

Theorem (Theorem 2 from Shaw and Yu (2023) simplified)

We can subsample to % of the k-mers using the open syncmer method, and
> the same extension runtime/recoverability results hold

> but chaining 0n|y takes % as |0ng Sketching k-mers
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Let ¢ = ©(logn) < k.
Theorem (Theorem 2 from Shaw and Yu (2023) simplified)
We can subsample to % of the k-mers using the open syncmer method, and
> the same extension runtime/recoverability results hold
> but chaining only takes % as long Sketching k-mers

Sketching provably reduces chaining time without increasing extension time
too much!



Simulation — sketching vs no sketching
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Figure: Align two length n strings with 6 = 0.10. Sketching with fraction ¢ » 2logn



. Seed-chain-extend
COﬂClUSlon analysis
Jim Shaw and Yun
William Yu
Motivation

» Optimal sequence alignment is slow — so we use heuristics

What we did

Conclusion



. Seed-chain-extend
COﬂClUSlon analysis
Jim Shaw and Yun
William Yu
Motivation

» Optimal sequence alignment is slow — so we use heuristics
» Heuristics have bad worst-case guarantees; not representative of real times
What we did

Conclusion



Seed-chain-extend

COﬂClUSlon analysis

Jim Shaw and Yun
William Yu

Motivation

» Optimal sequence alignment is slow — so we use heuristics

» Heuristics have bad worst-case guarantees; not representative of real times
What we did

» Proved O(mn( logn) <« O(mn) runtime and good accuracy in
expectation for seed-chain-extend.

Conclusion
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Motivation
» Optimal sequence alignment is slow — so we use heuristics

» Heuristics have bad worst-case guarantees; not representative of real times

What we did
» Proved O(mn( logn) <« O(mn) runtime and good accuracy in
expectation for seed-chain-extend. Conchucion
» Bounds also work for sketching and real data; provides justification usage of

sketching in long-read aligners
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