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Shotgun sequencing of sample

Metagenomics - analyzing shotgun sequences of an environmental sample

Microbial Metagenome
community reads
© — de novo assembly
truct
(reconstruct genomes)
database approaches
(which reference genomes/pathways/genes

are present?)

fastq file
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Focus of the talk

» Database approach
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Focus of the talk

» Database approach
» What genomes are in my sample?
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Focus of the talk

» Database approach

» What genomes are in my sample?
» Two distinct but similar approaches: profiling and containment
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What is metagenomic profiling?

Profiling: What taxa are in the community and how abundant are
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reads
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v genomes
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What is containment estimation?

Average nucleotide identity (ANI): genome-to-genome similarity
containment ANI: genome-to-metagenome similarity (nearest neighbor)
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Containment is a continuous measure

Containment: How similar is a genome to the genomes in the

Microbial
community
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1. Profiling - relative abundances of genomes/taxa
2. Containment - nucleotide similarity of genome within metagenome
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We present sylph, a new profiler with containment capabilities



sylph part 1 - k-mer sketching

Given a genome or a metagenome:
» Take all k-mers, sample only 1/c of them using FracMinHash (Irber et al.,

2022). Default ¢ = 200.
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sylph sketching

(1) Sketching k-mers and containment

ﬁpecies A Species A Species m
Strain 2 Strain 1

Sample 1/c k-mers
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v v v

Metagenomic

)

sylph:
metagenomic
profiling and
containment by
statistical k-mer
sketching

Jim Shaw® and
Yun William Yu?

k-mer sketching



Estimating containment ANI

k-mers differ between different genomes

99% similar strains

[ #
——— ——— k-mers
k [ [
-mers [——]
A — —
[———]

sylph:
metagenomic
profiling and
containment by
statistical k-mer
sketching

Jim Shaw® and
Yun William Yu?

Statistical
adjustment by ZIP
model



sylph:
metagenomic

Estimating containment ANI
profiling and
containment by
. statistical k-mer
Fact: sketching
1/k Jim Shaw! and
AN ~ |An B| / Yun William Yu?
Al
Statistical
adjustment by ZIP

99% similar strains
model

[ #
——— ——— k-mers
k [ [
-mers — —
A |=' [———]
[—=]



sylph:
Low abundance genomes e
rofiling and
ctfntainrr?ent by
statistical k-mer
sketching

Jim Shaw® and
Yun William Yu?

Statistical
adjustment by ZIP

Problem: this model had no read sampling. k-mers are missing in low
abundance genomes due to read sampling model



Low abundance genomes

|An B|/|A| underestimates ANI when k-mers are missing!

99% similar strains

k-mers from read

k-mers in ref.
sampling

genome

A B
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Zero-inflated Poisson model

99% similar strains
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(2) k-mer ANI with coverage adjustment

0 coverage k-mers \

inflated due to mutations
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coverage parameter
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Coverage adjustment

1. Estimate the true coverage parameter \

2. A= ##k]z]:::r:"\';?thm;'s'Itpilr'f“'gt;Ja“1 -(a+1) (similar to Skmer, Sarmashghi et al.,

2019)
3. Coverage adjusted ANI:

( AN B )1/"
Al (1-e?)

4. Intuition: small coverage == denominator is small, pushes ANI upwards

sylph:
metagenomic
profiling and
containment by
statistical k-mer
sketching

Jim Shaw® and
Yun William Yu?

Statistical
adjustment by ZIP
model
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Figure: Containment ANI against synthetic reads from a Klebsiella pneumoniae genome.
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Figure: Real reads for mock metagenome from Meslier et al. (2022) with known
references; black squares have uncorrected ANI.



sylph can do containment... but profiling?

» containment ANI - doesn’t say how abundant a microbe is
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sylph can do containment... but profiling?

» containment ANI - doesn’t say how abundant a microbe is
> Problem: k-mers are shared between genomes... which genome does a

k-mer belong to?
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Reassigning k-mers for profiling i,
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Synthetic metagenome - CAMI2 Marine

CAMI2 Challenge Marine (species level)
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Figure: CAMI2 marine metagenome profiling challenge.
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Synthetic metagenome - varying ANI
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Figure: sylph retains high precision for lower ANI and abundance microbes (species level

classification).
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Why is it so fast?

v

v

v

v

sylph does not classify reads (unlike Kraken et al.)

sylph does not align reads (unlike MetaPhlAn, mOTUs)

sylph shares one database for multi-sample profiling (unlike Kraken)
Engineering (uses AVX2 instructions for k-mer sketching, etc)
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Wallen et al. (2022) performed gut metagenome wide association study
(MWAS) for 490 Parkinson's Disease (PD) and 234 controls

They used differential abundance testing — p-value
» What we did: differential containment ANI — p-value

Queried 289,232 genomes (UHGG) against 5.5 tb of reads; took a ~ 3 hours
with 40 threads

v

v

ANI-based MWAS

v



Containment ANI MWAS SR

) profiling and
c R. lactatiformans (+) containment by
7 B. wexlerae A (-) A rectalis (-) statistical_k—mer
sketching
6
C. leptum (+
ptum (+) U Sp900GAZITH (+) Jim Shaw! and
5 - . Yun William Yu?
5
T 4
=
(=]
— “ ¥
837 i J‘ - .}
2 - 2 ) j

¥

btk il

UHGG genomes coloured and clustered by species
D E ANI-based MWAS

.
o
1

IS

-log10(p-val)
w A
1 1

[N)
N
1

Expected P-value (-log10 scale)

Species 1
0 ®  representative
T T T 04
0 2 4

A rectalis genomes ordered by similarity
Observed P-value (-log10 scale)



sylph:
metagenomic
profiling and

Results
containment by
statistical k-mer
sketching

Jim Shaw® and
Yun William Yu?

» Results are concordant with Wallen et al.

ANI-based MWAS



sylph:
metagenomic
profiling and

Results
containment by
statistical k-mer
sketching

Jim Shaw® and
Yun William Yu?

> Results are concordant with Wallen et al.
» Butyrate-producing bacteria (F. prausnitzii, A. rectalis) depleted in PD

ANI-based MWAS



sylph:
metagenomic
profiling and

Results
containment by

statistical k-mer
sketching

Jim Shaw® and
Yun William Yu?

> Results are concordant with Wallen et al.
» Butyrate-producing bacteria (F. prausnitzii, A. rectalis) depleted in PD

» Previous study (Becker et al. 2022) showed:

B. wexlerae abundance .
- o< fecal butyrate concentration P TERrp——
R. lactatiformans abundance
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Virome profiling and customized databases vs RefSeq

Comprehensive databases:
» GTDB-R214: 85,205 prokaryotic species genomes

» IMG/VR4: 2,917,521 species genomes

RefSeq:
> RefSeq representative prokaryotic: 18,325 genomes

» RefSeq viral: 14,993 genomes
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Synthetic metagenome - CAMI2 Marine

CAMI2 Challenge Marine (genus level)
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Figure: CAMI2 marine metagenome challenge profiling.
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Synthetic metagenome - CAMI2 Strain Madness
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Norm. L1 (genus)

Precision Sensitivity
1.0
1.00 093 1.00 087 0.89 082 15
0.75 0.75 10
0.53 .
0.50 0.50 ok
0.5
- o 4445
0.00 0.00 0.0
S &5 o O r & £ & N © o &
§ffdze S
> § =T R > & =T < o
S 5 ¥ £ S 5 % £
Qg 2 @ kK g 5 2 2 k5
g o F L g0 88
S £ s S £ N

Figure: CAMI2 strain madness metagenome challenge profiling.
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Profiling real reads

Precision

lllumina Nanopore-old PacBio

1.0 4998 0.94 0.94

0.8
2 15 = s 2
0.6 2 3 2 3 2
2 2 2 2 2
g g g ¢ 5
0.4 Ioe] o 3 o 3
0.2
0.0
£ Q4 £ < £ Q £ < F F < Q £ £ £ Q £ <
Q S @9 Q S 9 QL 9 QL 9 Q S o Q S @
>5 4 5 5855 > 5 53 58558 5846 5
X o & x o g o o X o g x o g
Q Q Q Q Q Q

Figure: Mock community profiling from Meslier et al. (2022)
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